LEGACY
SYSTEM
MODERNIZATION

softeta

TABLE
OF

CONTENTS

01

02

Executive summary

03

Why legacy system modernization matters now

Why doing nothing costs a fortune

04

05

06

What legacy systems really are

How legacy systems create problems for your entire business

How fast does modernization pay off

o7

How to know if your business is running legacy system(s)

08

09

What legacy system modernization actually means

10

Ways to modernize a legacy system

Why some modernization efforts fail

il

12

What defines a solid modernization strategy

How we can help you modernize your legacy system

18

What you actually gain from modernization

21

What happens if we work together

EXECUTIVE

o

&

o1

Most legacy systems don't crash. They keep the lights on,
but they slow down releases, block integrations, raise costs,
and make even small changes feel risky. Over time, they stop
enabling the business and start holding it back.

Meanwhile, competitors are moving ahead: deploying Al,
automating workflows, launching faster, and making decisions
in real time. None of that is possible on brittle systems with
outdated architectures and buried data.

This document breaks down what legacy systems really
cost, how they impact the entire business, and why delaying
modernization only compounds the risk. It also gives you a
practical way forward: phased, measurable, and grounded in
engineering reality.

This document covers the following topics:

What makes a system legacy and how to know when you've
crossed the line

How legacy systems create strategic debt across teams

Why Al, automation, and modern tooling require a clean
foundation

Where your system stands today (a risk-based evaluation
matrix)

The options for modernization beyond total rewrites

Why some modernization efforts fail and how to avoid the
common traps

How our five-phase approach reduces risk and delivers
early results

What business outcomes you should expect from doing it
right

Why legacy system
modernization
matters now

Waiting increases risk.
| Modern systems reduce it.

Every time your company delays addressing legacy systems, your

feel risky.

outcomes.

next.

02

business risks increase. When your core platform becomes so
fragile no one wants to touch it, projects get delayed. Teams spend
more time patching than building. Even basic improvements start to

That's how technical debt becomes financial debt, which eventually
becomes strategic debt. By the time you notice it, you're boxed in,
outpaced by competitors, locked into brittle systems, and staring
down a full-blown rewrite instead of a phased transition.

Meanwhile, companies that have modernized are already using Al
and automation to move faster. They're benefiting from real-time
analytics, machine learning, and process automation to improve
decision-making, reduce costs, and achieve better business

Without a modern foundation, which includes modular architecture,
clean data, and scalable infrastructure, those capabilities stay out
of reach. And that's why modernization is fundamentally not just
about fixing what's broken. It's about clearing the way for what's

Why doing nothing
costs a fortune

HH ‘ ‘ Inaction drains time, talent, and money.
Quietly, then suddenly.

The cost of maintaining the status quo hides in plain sight. Legacy systems drain
resources across every layer of the organization, even if they still appear to “work."

03

Security risks grow faster than
patches can catch up

Once a system falls out of support,
every vulnerability becomes
permanent. No MFA, no logging,
outdated libraries, and the only
thing stopping a breach is luck.

Technical debt eats into every
engineering hour

Developers spend time avoiding
system breakage instead of
building anything new. Code
changes take weeks, and every
release becomes a gamble. Bug
fixes carry risk. Feature delivery
slows to a crawl. Al and analytics
initiatives fail before they start
because the infrastructure can't
support them.

Hidden costs mount in
infrastructure

Manual deployments, monolithic
scaling, and inefficient code
inflate hosting bills. Every
workaround becomes a new
layer of complexity. Every delay
compounds.

Business initiatives get stuck
New integrations take months
instead of weeks. Al models can't
be deployed because the systems
can't serve data in real time.
Analytics projects fail because the
data is trapped. Strategic plans
stall because the system can't
support them.

Talent becomes

impossible to find

Modern engineers avoid fragile
legacy systems. Those who do join
spend months learning obsolete
stacks, only to leave once they
realize nothing is improving.

Eventually, at least one of three
things happens: a breach, an
outage, or a failed initiative that
costs real money. And the longer
the wait, the harder and more
expensive it becomes to fix.

What legacy systems

really are

HH ‘ ‘ Legacy means mismatch.
Not age.

Legacy status isn't defined
by age, but by mismatch.
A system becomes legacy
when it no longer fits the
business it's supposed to
enable, regardless of how
recently it was built.

In many cases, systems
called “legacy” still run
critical operations. But the
fact that they run doesn't

|
f’ >
((’((p)

mean they serve business
needs. They've become

fragile, expensive, hard to
adapt, and risky to touch.

Even relatively new
systems can become
legacy the moment they're
built on short-sighted

tech choices, rushed
architecture, or when
they're poorly documented

and understood. And
because modern
technologies like Al
depend on clean,
accessible data and
fast iteration cycles,
these systems quickly
become blockers to
innovation.

OLD SYSTEM LEGACY SYSTEM

May be relatively new,

Built a long time ago but no longer fits business needs

May be outdated but stable Fragile and risky

Inefficient but usable Blocks progress

Still plays a role Forces costly workarounds

Slow but manageable Makes even small changes painful

04

How legacy systems
create problems
for your entire business

‘H ‘ ‘ Every department feels the pain.
Even if the system “works.”

Rather than just impacting IT,
legacy systems often block
strategic initiatives across multiple
departments:

B Sales can't run real-time pricing
updates.

m Marketing can't access data for
segmentation.

m Finance runs month-end reports
days late.

m Customer support relies on tools
with no SLA or recovery plan.

B Logistics can't reliably track inventory in real time.
B Production operates on outdated schedules.
m Procurement can't sync supply orders with real-time demand.

B Legal and compliance teams lack access to audit trails and change logs.

Every department ends up building workarounds. Shadow systems in Excel.
Manual data exports. Duplicate entry across platforms. Al use cases like
forecasting, personalization, and automation are sidelined due to system
limitations. It all adds up in missed opportunities, inconsistent data, and
operational risk.

Modernization is often
framed as a cost. But
the data says it's one
of the fastest-returning
investments IT can

make.

According to
McKinsey, successful
modernization efforts
can cut IT run costs by
30-50%, with a break-
even point reached

in as little as 18-24

months. For companies

How fast does
modernization
pay off

HH | ‘ Modernization is one of the
fastest-ROI IT investments available.

6570x

UPTO 973X

50% INCREASE FASTER
reduction in deployment recovery from
inIT costs rate incidents

faster than low-
performing teams. And
they're the ones already
deploying Al models,
experimenting with
automation, and scaling
without bottlenecks.?

with $10M+ in annual

IT operations spend,
modernization brings in
a direct return of millions
within two fiscal years.!

Meanwhile, Google's
2023 DORA report
shows that elite
engineering teams
(typically working on
modernized systems)
deploy 973x more
frequently and recover
from incidents 6570x

1. Source: McKinsey, “Modernizing IT for greater value,” July 2022.
2. Source: Google DORA Report, 2023.

06

How to know if your business is
running legacy system(s)

”H ‘ Here's how to measure the drag...
and the urgency.

Our matrix below breaks legacy risk into key concerns that reflect direct business impact:
delayed feature delivery, fragile operations, mounting security risks, and growing cost. You
can use the matrix to assess where your systems fall and how urgently modernization needs

to begin:

LEGACY INDICATOR

LOW (MODERN)

MEDIUM (WARNING)

HIGH (CRITICAL)

Technology stack

<5 years, actively
supported

5-10 years, limited
support

>10 years,
unsupported

Development time

Days to weeks per
feature

Weeks to a month
per feature

Months per feature

Bug frequency

Few minor bugs (<1
per feature)

Moderate bugs (1-3
per feature)

High bug density
(>3 per feature)

Architecture

Microservices,

Monolithic with

Monolithic, highly

modular modular components coupled
Minor Moderate Severe, known
Security vulnerabilities, vulnerabilities, vulnerabilities,
patched quickly patches lagging unpatched
Hioh speed. minimal Moderate latency Significant
Performance g P ’ and throughput bottlenecks,
latency .
issues frequent slowdowns
. . Manual deployments,
Infrastructure Fully automated, Partial automation, Fylly o prerise.

cloud-native

hybrid environments

outdated hardware

Team maturity

Team fully
understands system

Partial
understanding among
team members

Limited
understanding,
dependency on few
individuals

Documentation

o7

Comprehensive,
regularly updated

Partial, outdated
documentation

Minimal or no
documentation,
severely outdated

What legacy system
modernization
actually means

HH ‘ | Not a rewrite.
A re-alignment with business and technology goals.

Modernization isn't about rewriting everything from scratch. It's about
removing structural risk, reducing long-term costs, and unlocking
business capabilities that legacy systems make impossible.

Legacy systems are often built on outdated frameworks, tight coupling
between modules, lack of automated testing, manual deployment
processes, and fragile infrastructure. Sure, they still work. But “still work”
is light years away from “scalable, secure, and adaptable.”

True modernization means
transforming the system so that it:

1. Can be changed without risk.
2. Can scale without a rewrite.

3. Supports automation, APIs, CI/CD,
and observability.

4. Enables integration of new
capabilities like machine
learning pipelines, real-time data
processing, and intelligent user
experiences.

Having said that, modernization
doesn't mean rebuilding everything.
In many cases, targeted changes offer
the highest return. The method must
fit the business reality, not the other
way around.

(01:]

Ways to modernize
a legacy system

HH ‘ There’s no one-size-fits-all.
Pick what fits your risk, time, and outcome goals.

Modernization can take many forms depending on the system's condition, business
needs, and appetite for change:

APPROACH WHAT IT MEANS IN PRACTICE
Leave the old code untouched, but expose it through clean
Encapsulation APIs to enable safe use. This enables 3rd party services
to access structured data without risky migrations.
Rehostin Move the system to new infrastructure without changing
& the code. Low effort, low payoff.
Replatforming Upgrade the runtime (e.g., .NET Framework to .NET Core)

without changing business logic.

. Refactoring

Improve internal structure and readability without
changing behavior. This boosts maintainability and makes
the system more predictable for integrations (e.g., AI).

‘ Rearchitecting

Redesign the system to support new capabilities and clean
separations. Higher complexity, high return.

@ rebuilding

Start over from scratch. High risk, high cost, but also
total removal of technical debt.

‘ Replacing

Swap the system with a SaaS or commercial solution
when in-house tech no longer makes sense. This frees
up internal resources and enables faster adoption of
industry-specific tools.

The best way to do it? The truth is, there is no universal answer. Choosing the right
path requires understanding both the system and the business. Decisions should
be based on cost-benefit logic, not trend or preference.

09

Why some modernization
efforts fail

HH ‘ Modernization fails when strategy
is missing and teams aren’t aligned.

We've helped businesses that previously failed modernization projects because they started
with a grandiose plan and no rollback strategy. Or because someone insisted on a new stack
without validating what actually needed to change.

In our experience, most failures stem from poor planning and weak internal alignment. Common
failure reasons include:

All-or-nothing thinking No plan for stabilization
A complete rebuild is started Security gaps and fragile
without fallback paths. After 12-18 ‘ deployment pipelines are left
months, the project is shelved due unaddressed during the transition,
to cost or delivery risk, leaving the increasing outage risk and
legacy system untouched and the creating fear of change.
new one unfinished.
‘@@ Inadequate modularization
Disconnect between IT and Efforts to modernize are blocked
“ business objectives by tightly coupled code, missing
The modernization plan is documentation, or fragile data
technically sound, but not backed structures (none of which were
by a business case. Without cost- identified at the start).

benefit visibility or phased ROI,
leadership loses confidence.

Disregarding internal

& stakeholders
Teams supporting the legacy
system are excluded or displaced.
This leads to loss of critical

institutional knowledge and active
resistance.

According to Flexera's CIO survey (2024 State of Tech Spend Report), 47% of IT leaders cite
“fear of business disruption” as the main blocker to modernization. 42% report that resistance
comes from within. l.e., operations and finance teams prefer the status quo. What's worse: 34%
admit their teams simply don’'t have the in-house capability to pull it off.

That's why modernization has to be a sustained, multi-phase engineering effort, not a feature
delivery sprint. It must be reversible, trackable, and grounded in reality from day one.

10

What defines
a solid modernization

strategy

HH ’ Fix what’s unsafe. Build confidence.
Modernize in layers. Avoid big bangs.

For our clients, we kickstart every modernization effort with the following approach:

1.

Diagnose
first

What's the real cost of maintenance?
What are the critical risks?
What's actively blocking business?

Where is your data, and how accessible
is it to power Al or analytics?

. Modernize

in layers

Decouple what can be isolated.

Rewrite only where it makes economic
sense.

Redesign with a clear, testable path to
production.

2. Start small

and reversible

Fix what's unsafe. Add automation.
Create environments.

Improve visibility and team confidence
before structural work begins.

Prepare for advanced use cases like
real-time monitoring or Al-based
anomaly detection.

4. Transition

deliberately

Run legacy and new systems in parallel.

Move users gradually. Track results.
Course-correct fast.

Build readiness for Al-driven
forecasting, smart operations, and
faster feature deployment.

Our experience shows that, when done right, modernization delivers clear business
results: faster development cycles, lower infrastructure cost, improved stability,
and readiness for future growth.

11

How we can help vyou
modernize your legacy system

”H ‘ Five practical phases. Low-risk.
High-impact. Measurable from day one.

Our modernization framework As a result, we've developed a five-phase
is designed around three core methodology that combines architecture evaluation,
principles: engineering best practices, and secure delivery
) infrastructure. Each phase unlocks the next with
1. Reduce risk early. measurable outcomes.

2. Deliver business value

continuously. This model is intentionally incremental and reversible.

. . Each step is designed to produce standalone benefits
3. Avoid dependency on heroic and inform better decisions, whether the system is
rewrites. refactored, rearchitected, or replaced.

—@ 3 business days

PHASE 1: Free high-level risk and
modernization readiness assessment

We'll
® 2-4 weeks mOderniZe
PHASE 2: Full system

assessment and strategy blueprint yOU r SySte m
In five clear

® 2-6 weeks
PHASE 3: Immediate risk mitigation Steps
and development infrastructure

: »l—. 6_12 months

PHASE 4: Progressive
modernization

---------- O Ongoing post-modernization

PHASE 5: Decommissioning
12 and future-proofing

Phase 1: Free high-level risk and
modernization readiness assessment

13

This phase provides a factual, fast-turnaround technical snapshot
of the system, its vulnerabilities, and its readiness for change. It is
fully non-invasive and no code is modified.

Duration:

3 business days
(1 FTE architect)

Q

What we evaluate:

m Codebase quality: complexity,
coupling, technical debt
density

B Dependency health: outdated
libraries, CVEs, unsupported
frameworks

B Security risks: hardcoded
secrets, unencrypted storage,
injection vectors

m Infrastructure posture:
monolithic design, infra drift,
manual deployments

B Business risk hotspots:
modules likely to fail or block
scale

m Early cloud-readiness
flags: compatibility with
containerization, CI/CD

B Al-readiness indicators:
accessibility of clean
data, integration points for
automation

Objective:

Build a cost-benefit driven business case for

modernization based on in-depth system and
business process analysis.

w

Output:

B A concise business-impact
risk report

m A tailored, high-level
modernization roadmap

m An initial cost-benefit
projection

Phase 2: Full system assessment
and strategy blueprint

14

Duration:

2-4 weeks

Q

What we analyze:

Architecture patterns:
modularity, extensibility,
coupling

Code maintainability: logic
centralization, testability,
obsolete design patterns

Compliance posture: GDPR,
HIPAA, ISO 27001 readiness

DevOps state: CI/CD maturity,
deployment reliability,
rollback mechanisms

Scalability limits: 1/0
bottlenecks, query
performance, concurrency
design

Change risk index:
undocumented modules,
brittle areas, tribal knowledge
risk

Data pipeline viability:
ability to support analytics,
reporting, or Al model
consumption

We go beyond surface-level audits. This phase includes an in-
depth technical and operational evaluation, which enables objective
decisions around rebuild, refactor, or rearchitect.

Objective:

Define a clear modernization plan based
on data and business objectives, not
assumptions.

w

Output:

m A phased modernization
strategy, broken down by
module or business domain

m Specific technical actions
tied to business capabilities
(e.qg., faster feature releases,
reduced downtime)

B A rational decision map: what
to keep, what to rework, what
to decommission

m Execution options: in-house,
hybrid, or fully outsourced
modernization

Phase 3: Immediate risk mitigation and
development infrastructure stabilization

phase, we ensure the system is defensible and modifiable without

HH ‘ Modernization work cannot start on unstable foundations. In this

fear of regression.

‘ Duration:
2-6 weeks

ol

What we do:

15

Fix high-severity
vulnerabilities (SQLi,
open endpoints, unsafe
deserialization)

Implement access controls,
secret management (e.g.,
Azure Key Vault, HashiCorp
Vault)

Separate production and
staging environments

Establish baseline CI/CD
pipelines (GitHub Actions,
GitLab CI, Azure DevOps)

Introduce observability: logs,
metrics, traces

Containerize non-critical
components to test scalability

Set up conditions for
introducing automation and
experimentation safely

Objective:

Unlock agility so that teams can now test,
develop, and deploy without touching
production.

w

Output:
B A stable and secure delivery
pipeline

B A non-disruptive testing
environment

B Automated deployments with
rollback support

Phase 4: Progressive
modernization

legacy pain points and modernize progressively, aligned with
business impact and technical feasibility.

HH ‘ We do not recommend "“big bang” rewrites. Instead, we isolate

‘ Duration: Objective:
6-12 months Transform the system by iteratively replacing,
refactoring, or isolating legacy components,
while business operations continue.

ol w

What we do: Output:
m Break up monoliths into m A modern, extensible system
service-aligned modules that aligns with business

. . . rowth plans
m Migrate business-critical 9 P

logic to modern stacks (e.g., B Subsystems that support
.NET Core, REST APIs, React) rapid iteration and secure

B Replace brittle modules (e.qg., operations
auth, billing, logging) with m Elimination of key blockers to
resilient equivalents integration, performance, or

- data access
m Optimize data layers

(indexing, caching, async
flows, data contracts)

B Move compute to scalable
cloud platforms (e.g.,
Kubernetes, serverless)

m Establish structured
versioning and branching
strategies

m Lay foundations for Al-driven
initiatives: event streams,
model endpoints, automation
triggers

16

Phase 5: Decommissioning
and future-proofing

retire legacy components and embed sustainable

‘H ‘ ‘ After the new architecture is operational, we safely

engineering practices.

‘ Duration:
Ongoing post-

modernization phase

What we implement:

17

Controlled sunset plans for
legacy components (including
migration support)

Predictive monitoring and
alerting (e.g., Grafana,
Prometheus, Datadog)

Governance policies: access
controls, environment
segregation, change logs

Internal documentation and
knowledge transfer

Optional long-term support or
hybrid team setup

Readiness for next-gen
capabilities: Al ops, smart
monitoring, continuous
optimization

Objective:

Finalize the transition and embed
long-term resilience into the
software lifecycle.

w

Output:

m A fully modern, observable,
and secure system

m A delivery pipeline built for
scale, not heroism

m A documented architecture,
owned and understood by
your internal teams

What you actually gain
from modernization

‘H ‘ ‘ Hint: security, speed, savings, and
readiness for what comes next.

Legacy modernization is a corrective Below are the most common, measurable
investment that unlocks operational outcomes we deliver in actual modernization
efficiency, reduces financial drag, and programs:

prepares an organization to compete with
speed and resilience.

Security risk elimination

METRIC TYPICAL RESULT

Known CVEs eliminated 90%+ in first 3 months

MFA adoption 100% across critical systems
Hardcoded secrets removed 100% within secure vault

Encryption at rest and in transit Enforced across all environments

Compliance posture Aligned with GDPR, ISO 27001, HIPAA or equivalent

Why it matters: One security incident or a failed audit can cost more than the entire modernization program.
Breach recovery costs tend to range from €300,000 to €2 million on average (excluding reputation damage).
Security maturity also sets the baseline for deploying sensitive Al services with confidence.

18

What you
actually gain from

modernization
O
Operational efficiency
METRIC BEFORE MODERNIZATION AFTER MODERNIZATION
Avg. deployment time 3-5 days (manual) 15-30 minutes (automated)
Change failure rate ~30-40% <5% (with CI/CD and rollback)
Time to onboard new dev 4-8 weeks 1-2 weeks (with docs and modular code)

Feature delivery pace Quarterly Bi-weekly or faster

Why it matters: Legacy systems waste developer time and burn opportunity. When changes are slow, every
product release is delayed, and technical debt compounds with every workaround. Modern systems produce
compounding benefits by accelerating development without increasing headcount. They also enable faster
deployment of automation workflows and machine learning models.

&

Stability, scalability, and improved uptime

METRIC TYPICAL RESULT

System uptime 99.95% or higher (from <98% baseline)
Load capacity Scaled 3x-10x post-migration
Performance bottlenecks resolved 70-90%

Peak load crash frequency Reduced to zero in stable deployments

Why it matters: Downtime, slow performance, and outages impact revenue, compliance, and customer trust. A
legacy system that fails under pressure becomes a strategic liability. Stable, scalable systems can also support
real-time analytics and intelligent applications without performance degradation.

19

What you
actually gain from

modernization
e
Cost optimization and long-term ROI
SOURCE OF SAVINGS TYPICAL RESULT
Infra cost reduction (cloud, containerization) 20-40% vs. legacy VMs or bare metal
Developer hours saved per month 50-150+
Vendor/tooling cost reduction Up to 30% (via consolidation and automation)
Reduced external support reliance Up to 80%

Why it matters: Legacy systems are deceptively expensive. The direct costs (maintenance, licenses,

hosting, etc.) are visible, but the indirect ones (e.g., staff churn, delay, opportunity cost) are much higher.
Modernization usually pays for itself within 12-24 months in most engagements, and opens the door to low-cost
experimentation with Al pilots and automated solutions.

<

Strategic readiness and future integration

ENABLER NEW CAPABILITY GAIN

Modular, API-first architecture Integrate with ERP/CRM, expose secure services

Data maturity uplift Real-time dashboards, event streams, audit logs
Cloud-native infra Auto-scaling, multi-region resilience

CI/CD pipelines Weekly deploys, rollback, A/B testing

Talent acquisition Attract modern engineering talent with competitive stack

Why it matters: Digital transformation is all about speed, insight, and control. A system that cannot scale,
integrate, or expose clean data cannot support Al, automation, or rapid iteration. Modernization prepares the
runway for transformation, making it possible to adopt machine learning, intelligent automation, and next-
generation data tools when you're ready.

20

What happens if
we work together

Most companies that provide modernization
services start with a 3-month discovery
phase and a 90-slide strategy deck. Then
they vanish into meetings and leave your
team in the dark.

We don't do that.

We start with real diagnostic work. Within
days, you get a risk map, tech-readiness
score, and a modernization plan that shows
actual system pain points mapped to
business impact.

If you're already working around your
system, it's time to face it head-on. It's time
to take you from fragile, undocumented

21

o

No 90-slide deck.

No hand-waving.

Just action, outcomes,
and results.

To discuss your legacy system
modernization, please contact us:

hello@softeta.com

+370 (687) 03888

legacy codebases to modern, modular
systems that move the business forward:

1. You start with a free, 3-day technical
and business risk assessment.

2. You walk away with a clear
modernization roadmap and hard
numbers to justify it.

3. If it makes sense, we help you execute it
in low-risk, measurable stages.

- softeta

Let's work together

Address Phone Email Website
Zalgirio g. 135 +37068703888 hello@softeta.com https://softeta.com
Vilnius 08217

MGUENRIE]

https://softeta.com

