
LEGACY
SYSTEM
MODERNIZATION
THAT WORKS

TABLE
OF
CONTENTS
01 Executive summary

02 Why legacy system modernization matters now

03 Why doing nothing costs a fortune

04 What legacy systems really are

05 How legacy systems create problems for your entire business

06 How fast does modernization pay off

07 How to know if your business is running legacy system(s)

08 What legacy system modernization actually means

09 Ways to modernize a legacy system

10 Why some modernization efforts fail

11 What defines a solid modernization strategy

12 How we can help you modernize your legacy system

18 What you actually gain from modernization

21 What happens if we work together

E
X

E
C

U
TI

V
E

S
U

M
M

A
R

Y

01

Most legacy systems don’t crash. They keep the lights on,
but they slow down releases, block integrations, raise costs,
and make even small changes feel risky. Over time, they stop
enabling the business and start holding it back.

Meanwhile, competitors are moving ahead: deploying AI,
automating workflows, launching faster, and making decisions
in real time. None of that is possible on brittle systems with
outdated architectures and buried data.

This document breaks down what legacy systems really
cost, how they impact the entire business, and why delaying
modernization only compounds the risk. It also gives you a
practical way forward: phased, measurable, and grounded in
engineering reality.

This document covers the following topics:

	■ What makes a system legacy and how to know when you’ve
crossed the line

	■ How legacy systems create strategic debt across teams

	■ Why AI, automation, and modern tooling require a clean
foundation

	■ Where your system stands today (a risk-based evaluation
matrix)

	■ The options for modernization beyond total rewrites

	■ Why some modernization efforts fail and how to avoid the
common traps

	■ How our five-phase approach reduces risk and delivers
early results

	■ What business outcomes you should expect from doing it
right

Why legacy system
modernization
matt ers now

Waiting increases risk.
Modern systems reduce it.

02

Every time your company delays addressing legacy systems, your
business risks increase. When your core platform becomes so
fragile no one wants to touch it, projects get delayed. Teams spend
more time patching than building. Even basic improvements start to
feel risky.

That’s how technical debt becomes financial debt, which eventually
becomes strategic debt. By the time you notice it, you’re boxed in,
outpaced by competitors, locked into brittle systems, and staring
down a full-blown rewrite instead of a phased transition.

Meanwhile, companies that have modernized are already using AI
and automation to move faster. They’re benefiting from real-time
analytics, machine learning, and process automation to improve
decision-making, reduce costs, and achieve better business
outcomes.

Without a modern foundation, which includes modular architecture,
clean data, and scalable infrastructure, those capabilities stay out
of reach. And that’s why modernization is fundamentally not just
about fixing what’s broken. It’s about clearing the way for what’s
next.

Why doing nothing
costs a fortune

Inaction drains time, talent, and money.
Quietly, then suddenly.

The cost of maintaining the status quo hides in plain sight. Legacy systems drain
resources across every layer of the organization, even if they still appear to “work.ˮ

03

Eventually, at least one of three
things happens: a breach, an
outage, or a failed initiative that
costs real money. And the longer
the wait, the harder and more
expensive it becomes to fix.

Security risks grow faster than
patches can catch up
Once a system falls out of support,
every vulnerability becomes
permanent. No MFA, no logging,
outdated libraries, and the only
thing stopping a breach is luck.

Technical debt eats into every
engineering hour
Developers spend time avoiding
system breakage instead of
building anything new. Code
changes take weeks, and every
release becomes a gamble. Bug
fixes carry risk. Feature delivery
slows to a crawl. AI and analytics
initiatives fail before they start
because the infrastructure can’t
support them.

Hidden costs mount in
infrastructure
Manual deployments, monolithic
scaling, and inefficient code
inflate hosting bills. Every
workaround becomes a new
layer of complexity. Every delay
compounds.

Business initiatives get stuck
New integrations take months
instead of weeks. AI models can’t
be deployed because the systems
can’t serve data in real time.
Analytics projects fail because the
data is trapped. Strategic plans
stall because the system can’t
support them.

Talent becomes
impossible to find
Modern engineers avoid fragile
legacy systems. Those who do join
spend months learning obsolete
stacks, only to leave once they
realize nothing is improving.

What legacy systems
really are

Legacy means mismatch.
Not age.

mean they serve business
needs. They’ve become
fragile, expensive, hard to
adapt, and risky to touch.

Even relatively new
systems can become
legacy the moment they’re
built on short-sighted
tech choices, rushed
architecture, or when
they’re poorly documented

Legacy status isn’t defined
by age, but by mismatch.
A system becomes legacy
when it no longer fits the
business it’s supposed to
enable, regardless of how
recently it was built.

In many cases, systems
called “legacyˮ still run
critical operations. But the
fact that they run doesn’t

and understood. And
because modern
technologies like AI
depend on clean,
accessible data and
fast iteration cycles,
these systems quickly
become blockers to
innovation.

04

OLD SYSTEM LEGACY SYSTEM

Built a long time ago May be relatively new,
but no longer fits business needs

May be outdated but stable Fragile and risky

Inefficient but usable Blocks progress

Still plays a role Forces costly workarounds

Slow but manageable Makes even small changes painful

05

How legacy systems

Every department feels the pain.
Even if the system “works.”

create problems
for your entire business

Rather than just impacting IT,
legacy systems often block
strategic initiatives across multiple
departments:

■ Sales can’t run real-time pricing
updates.

■ Marketing can’t access data for
segmentation.

■ Finance runs month-end reports
days late.

■ Customer support relies on tools
with no SLA or recovery plan.

■ Logistics can’t reliably track inventory in real time.

■ Production operates on outdated schedules.

■ Procurement can’t sync supply orders with real-time demand.

■ Legal and compliance teams lack access to audit trails and change logs.

Every department ends up building workarounds. Shadow systems in Excel.
Manual data exports. Duplicate entry across platforms. AI use cases like
forecasting, personalization, and automation are sidelined due to system
limitations. It all adds up in missed opportunities, inconsistent data, and
operational risk.

How fast does
modernization
pay off

Modernization is one of the
fastest-ROI IT investments available.

Modernization is often
framed as a cost. But
the data says it’s one
of the fastest-returning
investments IT can
make.

According to
McKinsey, successful
modernization efforts
can cut IT run costs by
30-50%, with a break-
even point reached
in as little as 18-24
months. For companies

with $10M+ in annual
IT operations spend,
modernization brings in
a direct return of millions
within two fiscal years.1

Meanwhile, Google’s
2023 DORA report
shows that elite
engineering teams
(typically working on
modernized systems)
deploy 973x more
frequently and recover
from incidents 6570x

faster than low-
performing teams. And
they’re the ones already
deploying AI models,
experimenting with
automation, and scaling
without bottlenecks.2

06

1. Source: McKinsey, “Modernizing IT for greater value,ˮ July 2022.
2. Source: Google DORA Report, 2023.

UP TO

50%
6570X

FASTER
973X

INCREASE
reduction
in IT costs

in deployment
rate

recovery from
incidents

How to know if your business is
running legacy system(s)

Here’s how to measure the drag…
and the urgency.

Our matrix below breaks legacy risk into key concerns that reflect direct business impact:
delayed feature delivery, fragile operations, mounting security risks, and growing cost. You
can use the matrix to assess where your systems fall and how urgently modernization needs
to begin:

LEGACY INDICATOR LOW (MODERN) MEDIUM (WARNING) HIGH (CRITICAL)

Technology stack <5 years, actively
supported

5-10 years, limited
support

>10 years,
unsupported

Development time Days to weeks per
feature

Weeks to a month
per feature Months per feature

Bug frequency Few minor bugs (<1
per feature)

Moderate bugs (1-3
per feature)

High bug density
(>3 per feature)

Architecture Microservices,
modular

Monolithic with
modular components

Monolithic, highly
coupled

Security
Minor
vulnerabilities,
patched quickly

Moderate
vulnerabilities,
patches lagging

Severe, known
vulnerabilities,
unpatched

Performance High speed, minimal
latency

Moderate latency
and throughput
issues

Significant
bottlenecks,
frequent slowdowns

Infrastructure Fully automated,
cloud-native

Partial automation,
hybrid environments

Manual deployments,
fully on-premise,
outdated hardware

Team maturity Team fully
understands system

Partial
understanding among
team members

Limited
understanding,
dependency on few
individuals

Documentation Comprehensive,
regularly updated

Partial, outdated
documentation

Minimal or no
documentation,
severely outdated

07

What legacy system
modernization
actually means

Not a rewrite.
A re-alignment with business and technology goals.

08

Modernization isn’t about rewriting everything from scratch. It’s about
removing structural risk, reducing long-term costs, and unlocking
business capabilities that legacy systems make impossible.

Legacy systems are often built on outdated frameworks, tight coupling
between modules, lack of automated testing, manual deployment
processes, and fragile infrastructure. Sure, they still work. But “still workˮ
is light years away from “scalable, secure, and adaptable.ˮ

True modernization means
transforming the system so that it:

1. Can be changed without risk.

2. Can scale without a rewrite.

3. Supports automation, APIs, CI/CD,
and observability.

4. Enables integration of new
capabilities like machine
learning pipelines, real-time data
processing, and intelligent user
experiences.

Having said that, modernization
doesn’t mean rebuilding everything.
In many cases, targeted changes offer
the highest return. The method must
fit the business reality, not the other
way around.

Ways to modernize
a legacy system

There’s no one-size-fi ts-all.
Pick what fi ts your risk, time, and outcome goals.

09

Modernization can take many forms depending on the system’s condition, business
needs, and appetite for change:

APPROACH WHAT IT MEANS IN PRACTICE

Encapsulation
Leave the old code untouched, but expose it through clean
APIs to enable safe use. This enables 3rd party services
to access structured data without risky migrations.

Rehosting Move the system to new infrastructure without changing
the code. Low effort, low payoff.

Replatforming Upgrade the runtime (e.g., .NET Framework to .NET Core)
without changing business logic.

Refactoring
Improve internal structure and readability without
changing behavior. This boosts maintainability and makes
the system more predictable for integrations (e.g., AI).

Rearchitecting Redesign the system to support new capabilities and clean
separations. Higher complexity, high return.

Rebuilding Start over from scratch. High risk, high cost, but also
total removal of technical debt.

Replacing

Swap the system with a SaaS or commercial solution
when in-house tech no longer makes sense. This frees
up internal resources and enables faster adoption of
industry-specific tools.

The best way to do it? The truth is, there is no universal answer. Choosing the right
path requires understanding both the system and the business. Decisions should
be based on cost-benefit logic, not trend or preference.

Why some modernization
eff orts fail

Modernization fails when strategy
is missing and teams aren’t aligned.

We’ve helped businesses that previously failed modernization projects because they started
with a grandiose plan and no rollback strategy. Or because someone insisted on a new stack
without validating what actually needed to change.

In our experience, most failures stem from poor planning and weak internal alignment. Common
failure reasons include:

All-or-nothing thinking
A complete rebuild is started
without fallback paths. After 12-18
months, the project is shelved due
to cost or delivery risk, leaving the
legacy system untouched and the
new one unfinished.

Disconnect between IT and
business objectives
The modernization plan is
technically sound, but not backed
by a business case. Without cost-
benefit visibility or phased ROI,
leadership loses confidence.

Disregarding internal
stakeholders
Teams supporting the legacy
system are excluded or displaced.
This leads to loss of critical
institutional knowledge and active
resistance.

No plan for stabilization
Security gaps and fragile
deployment pipelines are left
unaddressed during the transition,
increasing outage risk and
creating fear of change.

Inadequate modularization
Efforts to modernize are blocked
by tightly coupled code, missing
documentation, or fragile data
structures (none of which were
identified at the start).

According to Flexera’s CIO survey (2024 State of Tech Spend Report), 47% of IT leaders cite
“fear of business disruptionˮ as the main blocker to modernization. 42% report that resistance
comes from within. I.e., operations and finance teams prefer the status quo. What’s worse: 34%
admit their teams simply don’t have the in-house capability to pull it off.

That’s why modernization has to be a sustained, multi-phase engineering effort, not a feature
delivery sprint. It must be reversible, trackable, and grounded in reality from day one.

10

What defi nes
a solid modernization
strategy

Fix what’s unsafe. Build confi dence.
Modernize in layers. Avoid big bangs.

For our clients, we kickstart every modernization effort with the following approach:

1. Diagnose
 fi rst

■ What’s the real cost of maintenance?

■ What are the critical risks?

■ What’s actively blocking business?

■ Where is your data, and how accessible
is it to power AI or analytics?

2. Start small
 and reversible

■ Fix what’s unsafe. Add automation.
Create environments.

■ Improve visibility and team confidence
before structural work begins.

■ Prepare for advanced use cases like
real-time monitoring or AI-based
anomaly detection.

3. Modernize
 in layers

■ Decouple what can be isolated.

■ Rewrite only where it makes economic
sense.

■ Redesign with a clear, testable path to
production.

4. Transition
 deliberately

■ Run legacy and new systems in parallel.

■ Move users gradually. Track results.
Course-correct fast.

■ Build readiness for AI-driven
forecasting, smart operations, and
faster feature deployment.

Our experience shows that, when done right, modernization delivers clear business
results: faster development cycles, lower infrastructure cost, improved stability,
and readiness for future growth.

11

How we can help you
modernize your legacy system

Five practical phases. Low-risk.
High-impact. Measurable from day one.

Our modernization framework
is designed around three core
principles:

1. Reduce risk early.

2. Deliver business value
continuously.

3. Avoid dependency on heroic
rewrites.

12

As a result, we’ve developed a five-phase
methodology that combines architecture evaluation,
engineering best practices, and secure delivery
infrastructure. Each phase unlocks the next with
measurable outcomes.

This model is intentionally incremental and reversible.
Each step is designed to produce standalone benefits
and inform better decisions, whether the system is
refactored, rearchitected, or replaced.

PHASE 1: Free high-level risk and
modernization readiness assessment

3 business days

2-4 weeks
PHASE 2: Full system
assessment and strategy blueprint

2-6 weeks
PHASE 3: Immediate risk mitigation
and development infrastructure

6-12 months
PHASE 4: Progressive
modernization

Ongoing post-modernization
PHASE 5: Decommissioning
and future-proofing

We’ll
modernize
your system
in fi ve clear
steps

13

Phase 1: Free high-level risk and
modernization readiness assessment

What we evaluate:
■ Codebase quality: complexity,

coupling, technical debt
density

■ Dependency health: outdated
libraries, CVEs, unsupported
frameworks

■ Security risks: hardcoded
secrets, unencrypted storage,
injection vectors

■ Infrastructure posture:
monolithic design, infra drift,
manual deployments

■ Business risk hotspots:
modules likely to fail or block
scale

■ Early cloud-readiness
flags: compatibility with
containerization, CI/CD

■ AI-readiness indicators:
accessibility of clean
data, integration points for
automation

Duration:

3 business days
(1 FTE architect)

Objective:

Build a cost-benefi t driven business case for
modernization based on in-depth system and
business process analysis.

This phase provides a factual, fast-turnaround technical snapshot
of the system, its vulnerabilities, and its readiness for change. It is
fully non-invasive and no code is modified.

Output:
■ A concise business-impact

risk report

■ A tailored, high-level
modernization roadmap

■ An initial cost-benefit
projection

14

Phase 2: Full system assessment
and strategy blueprint

What we analyze:
■ Architecture patterns:

modularity, extensibility,
coupling

■ Code maintainability: logic
centralization, testability,
obsolete design patterns

■ Compliance posture: GDPR,
HIPAA, ISO 27001 readiness

■ DevOps state: CI/CD maturity,
deployment reliability,
rollback mechanisms

■ Scalability limits: I/O
bottlenecks, query
performance, concurrency
design

■ Change risk index:
undocumented modules,
brittle areas, tribal knowledge
risk

■ Data pipeline viability:
ability to support analytics,
reporting, or AI model
consumption

Duration:

2-4 weeks

Objective:

Defi ne a clear modernization plan based
on data and business objectives, not
assumptions.

We go beyond surface-level audits. This phase includes an in-
depth technical and operational evaluation, which enables objective
decisions around rebuild, refactor, or rearchitect.

Output:
■ A phased modernization

strategy, broken down by
module or business domain

■ Specific technical actions
tied to business capabilities
(e.g., faster feature releases,
reduced downtime)

■ A rational decision map: what
to keep, what to rework, what
to decommission

■ Execution options: in-house,
hybrid, or fully outsourced
modernization

15

Phase 3: Immediate risk mitigation and
development infrastructure stabilization

What we do:
■ Fix high-severity

vulnerabilities (SQLi,
open endpoints, unsafe
deserialization)

■ Implement access controls,
secret management (e.g.,
Azure Key Vault, HashiCorp
Vault)

■ Separate production and
staging environments

■ Establish baseline CI/CD
pipelines (GitHub Actions,
GitLab CI, Azure DevOps)

■ Introduce observability: logs,
metrics, traces

■ Containerize non-critical
components to test scalability

■ Set up conditions for
introducing automation and
experimentation safely

Duration:

2-6 weeks

Objective:

Unlock agility so that teams can now test,
develop, and deploy without touching
production.

Modernization work cannot start on unstable foundations. In this
phase, we ensure the system is defensible and modifiable without
fear of regression.

Output:
■ A stable and secure delivery

pipeline

■ A non-disruptive testing
environment

■ Automated deployments with
rollback support

16

Phase 4: Progressive
modernization

What we do:
■ Break up monoliths into

service-aligned modules

■ Migrate business-critical
logic to modern stacks (e.g.,
.NET Core, REST APIs, React)

■ Replace brittle modules (e.g.,
auth, billing, logging) with
resilient equivalents

■ Optimize data layers
(indexing, caching, async
flows, data contracts)

■ Move compute to scalable
cloud platforms (e.g.,
Kubernetes, serverless)

■ Establish structured
versioning and branching
strategies

■ Lay foundations for AI-driven
initiatives: event streams,
model endpoints, automation
triggers

Duration:

6-12 months

Objective:

Transform the system by iteratively replacing,
refactoring, or isolating legacy components,
while business operations continue.

We do not recommend “big bangˮ rewrites. Instead, we isolate
legacy pain points and modernize progressively, aligned with
business impact and technical feasibility.

Output:
■ A modern, extensible system

that aligns with business
growth plans

■ Subsystems that support
rapid iteration and secure
operations

■ Elimination of key blockers to
integration, performance, or
data access

17

Phase 5: Decommissioning
and future-proofi ng

What we implement:
■ Controlled sunset plans for

legacy components (including
migration support)

■ Predictive monitoring and
alerting (e.g., Grafana,
Prometheus, Datadog)

■ Governance policies: access
controls, environment
segregation, change logs

■ Internal documentation and
knowledge transfer

■ Optional long-term support or
hybrid team setup

■ Readiness for next-gen
capabilities: AI ops, smart
monitoring, continuous
optimization

Duration:

Ongoing post-
modernization phase

Objective:

Finalize the transition and embed
long-term resilience into the
software lifecycle.

After the new architecture is operational, we safely
retire legacy components and embed sustainable
engineering practices.

Output:
■ A fully modern, observable,

and secure system

■ A delivery pipeline built for
scale, not heroism

■ A documented architecture,
owned and understood by
your internal teams

What you actually gain
from modernization

Hint: security, speed, savings, and
readiness for what comes next.

Legacy modernization is a corrective
investment that unlocks operational
efficiency, reduces financial drag, and
prepares an organization to compete with
speed and resilience.

18

METRIC TYPICAL RESULT

Known CVEs eliminated 90%+ in first 3 months

MFA adoption 100% across critical systems

Hardcoded secrets removed 100% within secure vault

Encryption at rest and in transit Enforced across all environments

Compliance posture Aligned with GDPR, ISO 27001, HIPAA or equivalent

Security risk elimination

Why it matters: One security incident or a failed audit can cost more than the entire modernization program.
Breach recovery costs tend to range from €300,000 to €2 million on average (excluding reputation damage).
Security maturity also sets the baseline for deploying sensitive AI services with confidence.

What you actually gain
from modernization

Hint: security, speed, savings, and
readiness for what comes next.

Below are the most common, measurable
outcomes we deliver in actual modernization
programs:

19

METRIC BEFORE MODERNIZATION AFTER MODERNIZATION

Avg. deployment time 3-5 days (manual) 15-30 minutes (automated)

Change failure rate ~30-40% <5% (with CI/CD and rollback)

Time to onboard new dev 4-8 weeks 1-2 weeks (with docs and modular code)

Feature delivery pace Quarterly Bi-weekly or faster

Operational eff iciency

Why it matters: Legacy systems waste developer time and burn opportunity. When changes are slow, every
product release is delayed, and technical debt compounds with every workaround. Modern systems produce
compounding benefits by accelerating development without increasing headcount. They also enable faster
deployment of automation workflows and machine learning models.

METRIC TYPICAL RESULT

System uptime 99.95% or higher (from <98% baseline)

Load capacity Scaled 3x-10x post-migration

Performance bottlenecks resolved 70-90%

Peak load crash frequency Reduced to zero in stable deployments

Stability, scalability, and improved uptime

Why it matters: Downtime, slow performance, and outages impact revenue, compliance, and customer trust. A
legacy system that fails under pressure becomes a strategic liability. Stable, scalable systems can also support
real-time analytics and intelligent applications without performance degradation.

What you
actually gain from

modernization

20

Cost optimization and long-term ROI

Why it matters: Legacy systems are deceptively expensive. The direct costs (maintenance, licenses,
hosting, etc.) are visible, but the indirect ones (e.g., staff churn, delay, opportunity cost) are much higher.
Modernization usually pays for itself within 12-24 months in most engagements, and opens the door to low-cost
experimentation with AI pilots and automated solutions.

ENABLER NEW CAPABILITY GAIN

Modular, API-first architecture Integrate with ERP/CRM, expose secure services

Data maturity uplift Real-time dashboards, event streams, audit logs

Cloud-native infra Auto-scaling, multi-region resilience

CI/CD pipelines Weekly deploys, rollback, A/B testing

Talent acquisition Attract modern engineering talent with competitive stack

Strategic readiness and future integration

Why it matters: Digital transformation is all about speed, insight, and control. A system that cannot scale,
integrate, or expose clean data cannot support AI, automation, or rapid iteration. Modernization prepares the
runway for transformation, making it possible to adopt machine learning, intelligent automation, and next-
generation data tools when you’re ready.

SOURCE OF SAVINGS TYPICAL RESULT

Infra cost reduction (cloud, containerization) 20-40% vs. legacy VMs or bare metal

Developer hours saved per month 50-150+

Vendor/tooling cost reduction Up to 30% (via consolidation and automation)

Reduced external support reliance Up to 80%

What you
actually gain from

modernization

21

What happens if
we work together

No 90-slide deck.
No hand-waving.
Just action, outcomes,
and results.

Most companies that provide modernization
services start with a 3-month discovery
phase and a 90-slide strategy deck. Then
they vanish into meetings and leave your
team in the dark.

We don’t do that.

We start with real diagnostic work. Within
days, you get a risk map, tech-readiness
score, and a modernization plan that shows
actual system pain points mapped to
business impact.

If you’re already working around your
system, it’s time to face it head-on. It’s time
to take you from fragile, undocumented

legacy codebases to modern, modular
systems that move the business forward:

1. You start with a free, 3-day technical
and business risk assessment.

2. You walk away with a clear
modernization roadmap and hard
numbers to justify it.

3. If it makes sense, we help you execute it
in low-risk, measurable stages.

To discuss your legacy system
modernization, please contact us:

hello@softeta.com

+370 (687) 03888

Let’s work together
Address Phone Email Website

Žalgirio g. 135
Vilnius 08217
Lithuania

+37068703888 hello@softeta.com https://softeta.com

https://softeta.com

